Modelling the Interpretation of Literary Allusion with Machine Learning Techniques

N. Coffee', J. Gawley ', C.W. Forstall',W.J. Scheirer ${ }^{2,3}$, D. Johnson ${ }^{4}$, J.J. Corso ${ }^{4}$, and B. Parks ${ }^{2}$

I. Dept. of Classics, State University of New York at Buffalo 2. Dept. of Computer Science, Univ. of Colorado, Colorado Springs
3. Depts. of Molecular \& Cellular Biology, Computer Science, and Center for Brain Science, Harvard University
4. Dept. of Computer Science and Engineering, State University of New York at Buffalo

University of Colorado

What is the Tesserae Project?

```
Tessera (Latin): 1) a small square or block; 2)
a tablet bearing a password; 3) a token divided
between friends, so they or their descendants
can recognize one another when meeting again.
```

Tesserae is a freely available tool for detecting allusions in literary text.

http://tesserae.caset.buffalo.edu/

http://tesserae.caset.buffalo.edu/blog/

What's in Tesserae?

Distribution of Corpus Growth

2012: Subset of canonical Latin poetry

2013: Ingestion of all of
Perseus Latin and a subset canonical Greek texts
\# of words (2012) ■ \# of words (2013)

Tesserae Search

Parameters allow for fine-grained search

Top Results

BC	Target Phrase	Aeneid	Source Phrase
1.359	Si licet, exclamat, Romani maxime rector / Nominis et lus est, veras expromere voces;	2.279	Ultro flens ipse videbar / Compellare virum et maestas expromere voces:
1.367	Duc age per Scythiae populos, per inhospita Syrtis / Litora, per calidas Libyae sitientis arenas.	4.41	Hinc Gaetulae urbes, genus insuperabile bello, I et Numidae infreni cingunt et inhospita Syrtis;
1.132	totus popularibus auris / Impelli, plausuque sui gaudere theatri:	6.816	Quem luxta sequitur lactantior Ancus, I nunc quoque lam nimium gaudens popularibus auris.
1.38	scelera ipsa nefasque / Hac mercede placent:	7.317	Hac gener atque socer coeant mercede suorum:
1.237	Constitit ut capto lussus deponere miles / Signa fore, stridor lituum clangorque tubarum / Non pla concinuit cum rauco classica cornu.	11.192	It caelo clamorque virum clangorque tubarum.
1.237	Constitit ut capto lussus deponere miles / Signa fore, stridor lituum clangorque tubarum / Non pla concinuit cum rauco classica cornu.	2.313	Exoritur clamorque virum clangorque tubarum.
1.450	Et vos barbaricos ritus moremque sinistrum / Sacrorum, Druidae, positis repetistis $a b$ armis.	12.836	Morem ritusque sacrorum / adiclam faclamque omnis uno ore Latinos.

TESSERAE

How do we rank results?

d_{s} is the distance in the source

The Lucan commentaries are Heitland and Haskins 1887,Thompson and Bruère 1968 (TB),Viansino 1995 (V), and Roche 2009 (R).

Parallel Types

5. High formal similarity in analogous content
6. Moderate formal similarity in analogous context; or High formal similarity in moderately analogous context.
7. High / moderate formal similarity with very common phrase or words; or High / moderate formal similarity with no analogous context; or Moderate formal similarity with moderate / highly analogous context.
2.Very common words in very common phrase; or Words too distant to form a phrase.
I. Error in discovery algorithm, words should not have matched.

Average Hand Rank of Parallels per Automatic Score for Lucan / Vergil Benchmark Test

String matching is good, but...

Tesserae Lucan /Vergil
Benchmark Results
Recall and precision: Type 4-5

TESSERAE

Can we learn what allusion is to find new instances in a large corpus?

NY Times II.23.20I2
http://goo.gl/ROPdr

Scientists See Promise in Deep-Learning Programs

Machine Learning has the potential to be transformative for complex analysis tasks in literary study

Machine Learning and DH

"...what we have today in terms of literary and textual material and computational power represents a moment of revolution in the way we study the literary record"

- Matt Jockers, Macroanalysis
- Familiar DH areas using ML
- Distant Reading
- Authorship Attribution
- Stylometry
- Effective tools
- Mallett
- \underline{R}

TESSERAE

What are the limitations of what the DH community has been looking at?

- Straightforward classification: use algorithms as a "black box"
- Training with a small set of hand-tuned features
- Closed set evaluation

Novel applications of machine learning beyond what we've all seen before...

- Feature Learning
- Topic Modeling for Non-Lexical Matching
- Open Set Machine Learning

Learning Relevant Features

Features that Express Allusion

- Bamman and Crane 2008 ${ }^{1}$
- token similarity, n-grams and syntactic structure
- Gawley et al. 2012 ${ }^{2}$
- word frequency, distance between words, matching inflected word forms
- This work: greatly expanded feature set
- bi-gram frequency, frequency of individual words, character-level n-grams and edit distances

Benchmark Data

Lucan, Bellum Civile, Book I

Vergil, Aeneid

Virgil Mosaic Bardo Museum Tunis ©

- 3,400 pairs of sentences sharing at least one word
- Each pair was graded (I - 5), establishing a"bronze set" of ground-truth data

Complete Feature Set

102 Features

Word Matches BC
Word Matches AEN
Word Matches Both
Stem Matches BC
Stem Matches AEN
Stem Matches Both
Unique Forms of Word Matches
Unique Forms of Stem Matches
Word Matches Doc. Specific Mean Freq. BC Word Matches Doc. Specific Mean Freq. AEN Word Matches Doc. Specific Mean Freq. Both Word Matches Doc. Specific Min. Freq. BC Word Matches Doc. Specific Min. Freq. AEN Word Matches Doc. Specific Min. Freq. Both Word Matches Doc. Specific Inv. Freq. BC Word Matches Doc. Specific Inv. Freq. AEN Word Matches Doc. Specific Inv. Freq. Both Word Matches Corpus-wide Mean Freq. BC Word Matches Corpus-wide Mean Freq. AEN Word Matches Corpus-wide Mean Freq. Both

Word Matches Corpus-wide Min. Freq. BC Word Matches Corpus-wide Min. Freq. AEN Word Matches Corpus-wide Min. Freq. Both Word Matches Corpus-wide Inv. Freq. BC Word Matches Corpus-wide Inv. Freq. AEN Word Matches Corpus-wide Inv. Freq. Both Phrase Matches Doc. Specific Mean Freq. BC Phrase Matches Doc. Specific Mean Freq. AEN Phrase Matches Doc. Specific Mean Freq. Both Phrase Matches Doc. Specific Min. Freq. BC Phrase Matches Doc. Specific Min. Freq. AEN Phrase Matches Doc. Specific Min. Freq. Both Phrase Matches Doc. Specific Inv. Freq. BC Phrase Matches Doc. Specific Inv. Freq. AEN Phrase Matches Doc. Specific Inv. Freq. Both Phrase Matches Corpus-wide Mean Freq. BC Phrase Matches Corpus-wide Mean Freq. AEN Phrase Matches Corpus-wide Mean Freq. Both Phrase Matches Corpus-wide Min. Freq. BC

Phrase Matches Corpus-wide Min. Freq. AEN

Phrase Matches Corpus-wide Min. Freq. Both Phrase Matches Corpus-wide Inv. Freq. BC Phrase Matches Corpus-wide Inv. Freq. AEN Phrase Matches Corpus-wide Inv. Freq. Both Mean TF-IFD Word Matches in Phrases BC Mean TF-IFD Word Matches in Phrases AEN Mean TF-IFD Word Matches in Phrases Both Cum.TF-IFD Word Matches in Phrases BC Cum.TF-IFD Word Matches in Phrases AEN Cum.TF-IFD Word Matches in Phrases Both Max.TF-IFD Word Matches in Phrases BC Max. TF-IFD Word Matches in Phrases AEN Max.TF-IFD Word Matches in Phrases Both Mean TF-IFD Word Matches in Text BC Mean TF-IFD Word Matches in Text AEN Mean TF-IFD Word Matches in Text Both Cum. TF-IFD Word Matches in Text BC Cum. TF-IFD Word Matches in Text AEN Cum. TF-IFD Word Matches in Text Both Max.TF-IFD Word Matches in Text BC

Max.TF-IFD Word Matches in Text AEN Max.TF-IFD Word Matches in Text Both Mean TF-IFD All Words in Phrases BC Mean TF-IFD All Words in Phrases AEN Mean TF-IFD All Words in Phrases Both Cum.TF-IFD All Words in Phrases BC Cum. TF-IFD All Words in Phrases AEN Cum.TF-IFD All Words in Phrases Both Max.TF-IFD AllWords in Phrases BC Max.TF-IFD All Words in Phrases AEN Max.TF-IFD AllWords in Phrases Both Mean TF-IFD All Words in Text BC Mean TF-IFD All Words in Text AEN Mean TF-IFD All Words in Text Both Cum.TF-IFD All Words in Text BC Cum.TF-IFD All Words in Text AEN Cum. TF-IFD All Words in Text Both Max. TF-IFD All Words in Text BC Max.TF-IFD All Words in Text AEN Max.TF-IFD AllWords in Text Both

Semantic Similarity

Dist. Between Furthest Matching Words BC Dist. Between Furthest Matching Words AEN Dist. Between Furthest Matching Words Both Dist. Between Lowest-freq Words Doc. Specific BC Dist. Between Lowest-freq Words Doc. Specific AEN Dist. Between Lowest-freq Words Doc. Specific Both Dist. Between Lowest-freq Words Corpus-wide BC Dist. Between Lowest-freq Words Corpus-wide AEN Dist. Between Lowest-freq Words Corpus-wide Both Dist. Between Highest TF-IDF Words in Phrases BC Dist. Between Highest TF-IDF Words in Phrases AEN Dist. Between Highest TF-IDF Words in Phrases Both Dist. Between Highest TF-IDF Words in Text BC Dist. Between Highest TF-IDF Words in Text AEN Dist. Between Highest TF-IDF Words in Text Both Levenshtein Edit Distance

Character-level Uni-gram Count
Character-level Bi-gram Count
Character-level Tri-gram Count
Character-level Bi-gram Frequency
Character-level Tri-gram Frequency

Learning Relevant Features

Objective: learn relevant combinations of features in the presence of often incomplete data.
Task I: find good separation between high-ranked parallels (ranks $4 \& 5$) and low-ranked parallels (ranks I \& 2) for Bellum Civile and the Aeneid.

Task 2: find good separation between
commentator parallels and non-commentator parallels.

Why two different evaluation tasks?

- Neither task is ideal by itself
- Rank 4/5 vs. I/2 classification problem involves our own subjective hand-ranking
- Commentator vs. non-commentator classification problem gives no weight to meaningful parallels that the commentators did not record

Support Vector Machines

w is the weight vector, which gives us some sense of relative feature importance

Does SVM provide good separation?

- Rank 4/5 vs. I/2 Classification Problem:

Area Under the Curve (AUC): 81.5\%

This suggests that multiple quantifiable patterns do exist across allusions, which can be captured algorithmically.

Random Forest

Does Random Forest provide good separation?

- Rank 4/5 vs. I/2 Classification Problem:

Area Under the Curve (AUC) between: 82\% - 83\%

- Incomplete data: not all dimensions are present for every data point
- Use proximities to implicitly replace missing dimensions
- Imputation and Marginalization

Top 25 SVM Features: Rank 4/5 vs. I/2 Classification Problem

Mean-TFIDF-Word-Matches-in-Phrases-AEN Phrase-Matches-Doc-Specific-Mean-Freq-BC
Dist-Between-Highest-TFIDF-Words-in-Text-BC
Cum-TFIDF-Word-Matches-in-Phrases-AEN Mean-TFIDF-Word-Matches-in-Text-Both
Dist-Between-Furthest-Matching-Words-AENLevenshtein-Edit-Distance
Word-Matches-Corpus-Wide-Min-Freq-Both
Word-Matches-Doc-Specific-Min-Freq-BC Cum-TFIDF-Word-Matches-in-Text-BC Phrase-Matches-Corpus-Wide-Mean-Freq-AEN Word-Matches-Doc-Specific-Mean-Freq-BC
Max-TFIDF-Word-Matches-in-Phrases-BC
Mean-TFIDF-all-Words-in-Phrases-AENWord-Matches-AEN
Word-Matches-Doc-Specific-Min-Freq-Both
Stem-Matches-BC Word-Matches-Corpus-Wide-Min-Freq-BC
Phrase-Matches-Doc-Specific-Min-Freq-AEN
Word-Matches-Corpus-Wide-Min-Freq-AEN
Dist-Between-Lowest-Freq-Words-Doc-Specific-AEN
Max-TFIDF-all-Words-in-Text-Both Phrase-Matches-Corpus-Wide-Inv-Freq-AEN
Unique-Forms-of-Word-Matches
Mean-TFIDF-all-Words-in-Text-BC

Top 25 Random Forest Features: Rank 4/5 vs. I/2 Classification Problem

> Cum-TFIDF-all-Words-in-Text-BC Max-TFIDF-all-Words-in-Text-BC Cum -TFIDF-all-Words-in-Text-AEN
> Character-Level-Trigram-Count Mean-TFIDF-all-Words-in-Text-AEN
> Character-Level-Unigram-Count
> Prase-Matches-Corpus-Wide-Mean-Freq-BC
> Phrase-Matches-Corpus-Wide-Mean-Freq-Both
> Word-Matches-Corpus-Wide-Min-Freq-BC
> Phrase-Matches-Corpus-Wide-Inv-Freq-Both
> Character-Level-Trigram-Frequency
> Phrase-Matches-Doc-Specific-Mean-Freq-Both
> Mard-in-Phrases-BC
> Phrase-Matches-Doc-Specific-Mean-Freq-AENMean-TFIDF-all-Words-in-Text-BC
> Character-Level-Bigram-Frequency
> Phrase-Matches-Corpus-Wide-Mean-Freq-AEN
> Phrase-Matches-Corpus-Wide-Inv-Freq-AEN Phrase-Matches-Doc-Specific-Inv-Freq-AEN
> Cum-TFIDF-all-Words-in-Phrases-Both Character-Level-Bigram-Count Cum-TFIF-all-Words-in-Text-Both
> Cum-TFIDF-all-Words-in-Phrases-BC-Words-in-Phrases-AEN
> Cum-FIFID-all-Word-in-Phres

Top 25 Random Forest Features: Commentator vs. Non-Commentator Classification Problem

Cum-TFIDF-all-Words-in-Text-AEN
Max-TFIDF-all-Words-in-Text-BC
Character-Level-Bigram-Count
Word-Matches-Corpus-Wide-Min-Freq-Both
Character-Level-Unigram-Count
Phrase-Matches-Corpus-Wide-Inv-Freq-Both
Character-Level-Trigram-Count Phrase-Matches-Corpus-Wide-Inv-Freq-BC
Word-Matches-Corpus-Wide-Min-Freq-AEN Phrase-Matches-Doc-Specific-Mean-Freq-BC
Phrase-Matches-Corpus-Wide-Mean-Freq-BC
Character-Level-Bigram-Frequency
Phrase-Matches-Corpus-Wide-Mean-Freq-Both Phrase-Matches-Corpus-Wide-Mean-Freq-AEN
Character-Level-Trigram-FrequencyCum-TFIDF-all-Words-in-Phrases-AEN
Phrase-Matches-Doc-Specific-Mean-Freq-Both
Phrase-Matches-Doc-Specific-Mean-Freq-AEN
Word-Matches-Corpus-Wide-Min-Freq-BC Mean-TFIDF-all-Words-in-Text-BC
Unique-Forms-of-Word-Matches Phrase-Matches-Doc-Specific-Inv-Freq-AEN
Mean-TFIDF-Word-Matches-in-Phrases-AEN
Cum-TFIDF-all-Words-in-Phrases-Both
Cum-TFIDF-all-Words-in-Phrases-BC

Are any weightings correlated?

SVM and Random Forest
Rank 4/5 vs. I/2 Classification Problem

Mean-TFIDF-all-Words-in-Text-BC
Phrase-Matches-Corpus-Wide-Inv-Freq-AEN
Phrase-Matches-Corpus-Wide-Mean-Freq-AEN
Word-Matches-Corpus-Wide-Min-Freq-BC

Are any weightings correlated?

Random Forest

Rank $4 / 5$ vs. I/2 Classification Problem and Commentator vs. Non-Commentator Classification Problem

Phrase-Matches-Doc-Specific-Inv-Freq-AEN
Phrase-Matches-Doc-Specific-Mean-Freq-AEN Max-TFIDF-all-Words-in-Text-BC Phrase-Matches-Corpus-Wide-Mean-Freq-Both Character-Level-Unigram-Count
Phrase-Matches-Corpus-Wide-Mean-Freq-BC
Character-Level-Bigram-Count Phrase-Matches-Corpus-Wide-Inv-Freq-Both
Cum-TFIDF-all-Words-in-Text-AEN Character-Level-Trigram-Frequency
Mean-TFIDF-all-Words-in-Text-BC Phrase-Matches-Doc-Specific-Mean-Freq-Both
Character-Level-Bigram-Frequency
Character-Level-Trigram-Count Cum-TFIDF-all-Words-in-Phrases-BC
Phrase-Matches-Corpus-Wide-Mean-Freq-AEN
Cum-TFIDF-all-Words-in-Phrases-Both Cum-TFIDF-all-Words-in-Phrases-AEN
Word-Matches-Corpus-Wide-Min-Freq-BC

Analysis

- Features universal to our benchmark experiment
- Phrase-Matches-Corpus-Wide-Mean-Freq-AEN
- Mean-TFIDF-all-Words-in-Text-BC
- Word-Matches-Corpus-Wide-Min-Freq-BC
- Phrase level features are interesting: what makes an allusion extends beyond the matching words.
- We can measure this in cases where there are no matching words
- Global features (corpus- and text-wide) are also a signature of a particular poet's style
- In this case, Lucan

Analysis

- Summary of features that are important for Vergil: Overall sense of word rarity
- Summary of features that are important for Lucan: Targeted rare words
- Are these particular features specific to the benchmark set???

Topic Modeling for
 Non-Lexical Matching

Another type of allusion

- Macrobius (5th century) Recognized thematic similarity as a characteristic of allusion

Example ${ }^{1}$

praeterea iam nec mutari pabula refert quaesitaeque nocent artes, cessere magistri.
(Vergil Georgics 3.548-9)
Besides, it makes no difference now to change their feed, healing arts do harm when applied, their masters withdraw in defeat.
nec requies erat ulla mali: defessa iacebant corpora, mussabat tacito medicina timore.
(Lucretius De Rerum Natura 6.ll78-9)
Nor did the evil know any respite: their bodies lay exhausted, physicians reduced to muttering in silent fear.

Topic Modeling for Matching Allusions

- Objective: improve recall by finding additional parallels based on context

Query: "Rubiconis aquas" LSA Score
2. post Cilicasne uagos et lassi Pontica regis proelia barbarico uix consummata ueneno ultima Pompeio dabitur prouincia Caesar 0.99977112
4. iam gelidas Caesar cursu superauerat Alpes ingentisque animo motus bellumque futurum ceperat ut uentum est parui Rubiconis ad undas 0.9991958 I
3. non si tumido me gurgite Ganges summoueat stabit iam flumine Caesar in ullo post Rubiconis aquas 0.89826238
5. sed non in Caesare tantum nomen erat nec fama ducis sed nescia uirtus stare loco solusque pudor non uincere bello 0.023670167
I. Bella per Emathios plus quam ciuilia campos iusque datum sceleri canimus 0.0
6. turba minor ritu sequitur succincta Gabino Vestalemque chorum ducit uittata sacerdos Troianam soli cui fas uidisse Mineruam 0.0
7. certe populi quos despicit Arctos felices errore suo quos ille timorum maximus haut urguet leti metus 0.0
8. quodque nefas nullis inpune apparuit extis ecce uidet capiti fibrarum increscere molem alterius capitis 0.0
9. rupta quies populi stratisque excita iuuentus deripuit sacris adfixa penatibus arma quae pax longa dabat 0.0

Algorithmic Approach

- Latent Semantic Analysis (LSA) from the Gensim Package
- Query: 14 lines around target sentence
- Documents: 14 lines around target sentences throughout the entire reference corpus
- Features: bag-of-words representation, with the inflected form of each word replaced with the set of all possible stems
- Free parameter: number of topics

A match to Roche's sensitivity ${ }^{1}$ to thematic similarity without close verbal resemblance

Abstract

Civil War I.498-5II qualis, cum turbidus Auster reppulit a Libycis inmensum Syrtibus aequor fractaque ueliferi sonuerunt pondera mali, desilit in fluctus deserta puppe magister nauitaque et nondum sparsa conpage carinae naufragium sibi quisque facit, sic urbe relicta in bellum fugitur. nullum iam languidus aeuo eualuit reuocare parens coniunxue maritum fletibus, aut patrii, dubiae dum uota salutis conciperent, tenuere lares; nec limine quisquam haesit et extremo tunc forsitan urbis amatae plenus abit uisu: ruit inreuocabile uolgus. o faciles dare summa deos eademque tueri difficiles!

Additional Bellum Civile I - Aeneid commentator parallels recovered (I2)

BC Line	AEN Line	Shared Context	Num. Topics	Rank
1.60	1.291	Divine destiny of Caesar; peace	10	4
1.139	4.441	The blowing wind; tree	20	4
1.141	2.626	The blowing wind; tree	15	2
1.193	2.774	An apparition	20	28
1.193	3.47	An apparition	15	42
1.291	11.492	Horses	20	30
1.490	11.142	Flight	15	46
1.504	2.634	Abandonment	15	1*
1.504	3.11	Abandonment; Nautical Imagery	15	1
1.673	2.199	Omens; terror	15	24
1.676	4.68	Dido as Bacchant	15	I
1.676	6.48	Prophecy	15	32
1.695	6.102	Frenzied Discussion	20	29

[^0]
TESSERAE

Available in Tesserae

http://tesserae.vast.uccs.edu/cgi-bin/Isa.pl

Back to Tesserae	Back to Tesserae
Target: Lucan - Bellum Civile - Book 1	Source: Vergil - Aeneid - Book 1
LUCAN.BELLUM_CIVILE.PART. 1	
Click to select a phrase (plus surrounding context). Matches in vergil.aeneid.part. 1 will be highlighted at right.	VERGIL.AENEID.PART. 1
1.1 Bella per Emathios plus quam civilia campos 1.2 Iusque datum sceleri canimus, populumque potentem 1.3 In sua victrici conversum viscera dextra, 1.4 Cognatasque acies, et rupto foedere regni, 1.5 Certatum totis concussi viribus orbis 1.6 In commune nefas, infestisque obvia signis 1.7 Signa, pares aquilas, et pila minantia pilis. 1.8 Quis furor, o cives, quae tanta licentia ferri, 1.9 Gentibus invisis Latium praebere cruorem? 1.10 Cumque superba foret Babylon spolianda tropaeis 1.11 Ausoniis, umbraque erraret Crassus inulta, 1.12 Bella geri placuit nullos habitura triumphos? 1.13 Heu quantum terrae potuit pelagique parari 1.14 Hoc, quem civiles hauserunt, sanguine, dextrae, 1.15 Unde venit Titan, et nox ubi sidera condit, 1.16 Quaque dies medius flagrantibus aestuat horis, 1.17 Et qua bruma, rigens ac nescia vere remitti, 1.18 Adstringit Scythico glacialem frigore pontum! 1.19 Sub iuga iam Seres, iam barbarus isset Araxes, 1.20 Et gens si qua lacet nascenti conscia Nilo.	1.1 Arma virumque cano, Troiae qui primus ab oris 1.2 Italiam, fato profugus, Laviniaque venit 1.3 litora, multum ille et terris iactatus et alto 1.4 vi superum saevae memorem lunonis ob iram; 1.5 multa quoque et bello passus, dum conderet urbem, 1.6 inferretque deos Latio, genus unde Latinum, 1.7 Albanique patres, atque altae moenia Romae. 1.8 Musa, mihi causas memora, quo numine laeso, 1.9 quidve dolens, regina deum tot volvere casus 1.10 insignem pietate virum, tot adire labores 1.11 impulerit. Tantaene animis caelestibus irae? 1.12 Urbs antiqua fuit, Tyrii tenuere coloni, 1.13 Karthago, Italiam contra Tiberinaque longe 1.14 ostia, dives opum studiisque asperrima belli; 1.15 quam luno fertur terris magis omnibus unam 1.16 posthabita coluisse Samo; hic illius arma, 1.17 hic currus fuit; hoc regnum dea gentibus esse, 1.18 si qua fata sinant, iam tum tenditque fovetque. 1.19 Progeniem sed enim Troiano a sanguine duci 1.20 audierat, Tyrias olim quae verteret arces;

TESSERAE

Open Set Machine Learning

How well are we really doing on classification tasks?

- Lots of good work in classification, but nearly all of it is in a closed set context, e.g.
- Jockers et al. LLC 2008 ${ }^{1}$
- Book of Mormon
- Jockers andWitten LLC 2010²
- Federalist Papers
- Eder 2010^{3}
- English novels, Polish Novels and Latin Prose
- Eder and Rybicki 20134
- English, German, French, Italian, and Polish Novels

Notable Exceptions

- Schaalje and Fields, LLC 2011 ${ }^{1}$
- Koppel et al. English Studies 2012 ${ }^{2}$
- Solutions reduce to thresholds over similarity scores...

Can we do better?

Assessing Stylistic Similarity

Forstall et al. LLC 201II - I-class SVM

Bad density estimator for under-sampled positive training data great when the positive class is complete

Open Set Machine Learning

I-vs-Set Machine ${ }^{1}$

Minimize risk of the unknown +
empirical risk over the training data

I.W. Scheirer, A. Rocha, A. Sapkota, and T. Boult,"Towards Open Set Recognition," IEEE T-PAMI, 36(3), 20 I 3.

Tesserae Bibliography

N. Coffee, J.-P. Koenig, S. Poornima, C.W. Forstall, R. Ossewaarde and S.L. Jacobson, "The Tesserae Project: Intertextual Analysis of Latin Poetry," LLC, 28(2), 2013.
N. Coffee, J.-P. Koenig, S. Poornima, C.W. Forstall, R. Ossewaarde and S.L. Jacobson, "Intertextuality in the Digital Age," Transactions of the American Philological Association, 142(2), 2012.
C.W. Forstall,W.J. Scheirer and S.L. Jacobson,"Evidence of Intertextuality: Investigating Paul the Deacon's Angustae Vitae," LLC, 26(3), 20 I I.
C.W. Forstall and W.J. Scheirer, "Features from Frequency:Authorship and Stylistic Analysis Using Repetitive Sound," Proc. of DHCS, I(2), 2010.

Research Blog: http://tesserae.caset.buffalo.edu/blog/

[^0]: * denotes a parallel also found by Tesserae Version 3 scoring.

