Architecture to Enable Large-scale Computational Analysis of Millions of Volumes

Yiming Sun, Stacy Kowalczyk, Beth Plale, J. Stephen Downie, Loretta Auvil, Boris Capitanu, Kirk Hess, Zong Peng, Guangchen Ruan, Aaron Todd, Jiaan Zeng

HTRC System Architecture

- **Blacklight**
- **Portal**

<table>
<thead>
<tr>
<th>Algorithms and Worksets Registry (WSO2 Governance Registry)</th>
<th>HTRC Data API access interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security (OAuth2 WSO2 Identity Server)</td>
<td></td>
</tr>
<tr>
<td>Application Submission</td>
<td></td>
</tr>
</tbody>
</table>

Audit

- High level apps
 - Topic Modeling
 - Token Count
 - Log Likelihood
- Cassandra cluster volume store
- Solr index

Compute resources
- VM Manager
- Registry Service
- Job Manager
- Corpus Repository

Storage resources
- HTRC Job Submission Module
- HTRC Job Manager

Prototype Sloan Cloud

- Authentication Server
- VM Manager
- Job Submission Module
- Registry Service

HTRC Portal & Blacklight

Algorithm: Topic Modeling

- LDA-style topic analysis using Mallet
- First and last lines of each page removed
- End of line hyphenated words are joined
- Tokens containing non-alphanumeric characters removed
- Stop words filtered, with “not” replaced by “not_”
- 12 topics, 100 tokens per topic over Jane Austen collection

Algorithm: Entity Extraction

- Date entities extracted and displayed using SIMILE
- Location, person, time, date, money, organization, percentage can be extracted and displayed in tabular form
- Entities extracted from Jane Austen collection

Algorithm: Dunning Log Likelihood

- Words more frequent in Charles Dickens collection (analysis) than in Jane Austen collection (reference)

- 2.7 million volumes in corpus
- 3 stacks: production, development, sandbox
- HTRC-provided non-consumptive algorithms

- Support for large-scale non-consumptive algorithms
- Allow researchers to submit algorithms and worksets to run as Map/Reduce jobs